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e Alas areal science and not just a e  Graphs can represent everything. e The “Learning Problem” can be
label for a collection of methods. They are intuitive representations formalised and characterized by
that retain a lot of formalism. well-founded probabilistic and

real-world phenomena such that e Joining a very powerful method of
computers can replicate and learn viewing problems (graphs) with a e Defined traditional machine-learning
them. very powerful method of solving cycles as theoretical backed steps.

problems (Al) leads to success.



Selected Non Graph Related Research

e Designed and implemented new spatio-temporal data structures to improve the space
and time complexity of the state-of-the-art methods. s
e Major applications are in geometrical rendering and tracing and information query.

To be published soon @

e Developed and implemented methods based on reinforcement learning and genetic
algorithms to extract information from encrypted TCP connections. :
: - . . Technical report not
e Applied methods that building on extracted information measure temporal " available to the
sequence similarity. public.
e  Major applications are in deanonymizing Dark Web Traffic of Mix Networks like Tor.

e Formulated a version of t-SNE to be applied to data streams. The methods focus on S+t-SNE - Bringing
ensuring space and time complexity in infinite data scenarios. Dimensionality
e Worked on fast methods to select points based neighborhood density to [ Reduction to Data
accommodate infinite data and on methods based simple tessellations to combat Streams.10.1007/978-3-03
; 1-58553-1 8
drift. )
4


https://doi.org/10.1007/978-3-031-58553-1_8
https://doi.org/10.1007/978-3-031-58553-1_8

Dynamic Mechanisms forming Networks of MOBA Matches

e Competitive online gaming is one a popular hobbies. MOBA games such as League of Legends and Dota 2 are
among the most played ones.

e Understanding what is the dynamics and topology of the network that the system behind the matchmaking

creates can help with:
o  The study of how scam attempts and harassment propagates.
o  Determine the level of influence of players in the network.

e Such studies aim at developing a smoother, safer and more enjoyable experience to players.

e Query 50000 matches starting from a random player in the most populous game rank and performing
branch-limited breadth-first search (BFS).

e Transform the data obtained in a network with nodes being games (direct interaction between 10 players) and
edges connecting matches with common players.




Dynamic Mechanisms forming Networks of MOBA Matches

e High percentage of repeated players, between 27.65% and 47.66%, meaning players often play in close circles.
Matchmaking system cannot efficiently shuffle players. This is further amplified by different players tending to
play in a different but specific times of the day.

e Bianconi-Barabasi process (10.1209/epl/i2001-00260-6) with o = 2.47 and kp,in = 48, some initial attractiveness
and link removal seems to be the best model to describe the truncated power-law the network presents. This
aligns with the interference expected from the rank-based matchmaking system.

e  Exposure curves and resilience tests through percolation show the expected behaviour with respect to the
model estimated.
o A\ Key Takeaway: Attempts to mitigate scam and harassment should focus on “immunize” key players
rather than try to prevent it everywhere. A\
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https://doi.org/10.1209/epl%2Fi2001-00260-6

Using Graph Neural Networks to Find Motifs

e Motifs as a tool e.g. Motif2vec, Motif Graph Attention Networks, GNNExplainer, TempME
o  These works do not predict motifs, they assume they already exist or create them with traditional
methods.

e Counting occurrences of graphs e.g. Simple MPNNs, Subgraph GNNs, etc.
o 1. Are fully bounded by the expressivity (for this task) of the models used. No workaround to avoid it.
o  2.Suffer from high variation in the number of occurrences of the graphs of interest as the size of the
graph(s) to analyse increases.

e Directly predicting motifs e.g. GROVER, MGSSL, MICRO-Graph, MotifFiesta, SPMiner
o  3.The application of a NULL model is either nonexistent or unsatisfactory.

4, Lack of a score to compare the relevance of different motifs found.

5. Lack of interpretability for the mechanism used to generate the motifs.

6. Difficulty to control the size of the graph(s) branded as motifs.

7.1gnore everything that is not a motif.

o O O O


https://ieeexplore.ieee.org/document/9005670
https://www.mdpi.com/2227-7390/12/2/293
https://arxiv.org/abs/1903.03894
https://arxiv.org/abs/2310.19324
https://arxiv.org/abs/2007.02835
https://arxiv.org/abs/2110.00987
https://arxiv.org/pdf/2012.12533
https://arxiv.org/abs/2206.01008
https://snap.stanford.edu/frequent-subgraph-mining/

Our Approach

e Removes ambiguity by training a specific generic set of graphs, §, that is known to be important for network
analysis. Allows to easily get a complete description of §. « limitations 5, 6 and 7.

e Train the model to return relevant results by integrating the null model in the target variable. < 3 and 5.
o Break theoretical results regarding expressivity of models for motif finding. « 1.

e Normalise the score used as target. «— 2 and 4.

o  The normalisation forces an algebraic dependence between graphs with the same number of nodes.
o  Constraining the scores between -1 and 1 allows comparison between networks of different sizes.

o  Removes instability of the variance between predicted scores on networks of different sizes”.

e Pick S such that multi-target regression with mechanisms such as weight sharing can help the model have a
strong inductive bias towards meaningful patterns™. « Bonus

* Could be achieved with normalisation
techniques e.g. few-shot, invariant risk
minimization, invariant feature learning.
However, it would be more complex and
the two points above would be lost.

** Regression Chains should further
enhance the model's capacity.
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Comparison with other approaches

e Multi-target regression: big win

Graph A
Type single multi  single multi  single multi  single multi  single multi  single multi  single multi  single multi . . . A .
e Direct estimation: benefits
100% 2921 2.868 1231 0.991  1.193 0.816  1.498 0.861  1.056 1268 2275 2.388  1.814 2.193  2.940 2.621 . ; - .
-1.814% -19.496% -31.601% -42.523% +20.076% +4.967% +20.893% -10.850% outwelgh the Qre|udlces. Itis
0.279 0250 0316 0396  0.309 0.320  0.350 0.347  0.547 0.502  0.517 0489 1294 0.741  1.463 0.808 . . .

i -10.394% +25.316% +3.560% -0.857% -8.227% -5.416% -42.736% -44.771% speC|aIIy gOOd in the first 3 graphs.
75 0078 0.091 0095 0.043  0.047 0.041  0.083 0.053  0.067 0.038  0.082 0.100 0210 0.042 0357 0.048 o We expect this difference to
+16.667% -54.737% -12.766% -36.145% -43.284% +21.951% -80.000% -86.555% . . .
so5 00040009 0017 0011 0004 0.006 0.008 0.007 0.005 0.003 ~ 0.007 0.012 0051 0.007  0.042 0.007 increase in favor of direct

+125.000% -35.294% +50.000% -12.500% -40.000% +71.429% -86.275% -83.333% estimation in
55,  0-000 0.001  0.001 0.000  0.000 0.000 0.001 0.001 ~ 0.001 0.000  0.001 0.002 0.005 0.000  0.012 0.003 =
+100.000%  -100.000% 0.00% 0.00% -100.000%  +100.000%  -100.000% -75.000% out-of-distribution

Multiple scores at once (multi) against a single one (single) - % variation between squared error of multi and single.

estimation.

o A Key Takeaway: Our approach
should benefit any model with

Graph
Type  Count P Count SP  Count P Count SP  Count SP  Count SP  Count SP Coﬁi\{ SP dimensionality smaller than the
75 04690222 0377 0323 0326 0.199 0322 0227 03610.173  0.680 0.298 0509 0.172  0.625 0.278 size of the largest graph in S
-52.584% -14.378% -38.799% 29618%  -52.117%  -56.225% -66.154% -55.554% (assuming some relation between
so 0339 0116 02360.100  0.175 0.056 0.174 0.083 02140.083 0311 0.126 0368 0.072  0.358 0.079 g
-65.907% -53.718% -68.007% 52079%  -61.143%  -59.456% -80.448% -78.013% graphs of S). A
5sq 0041 0044 0.115 0.042  0.106 0.036 0065 0.031  0.0630.020 0.144 0.041  0.328 0.027 0300 0.021
+5.426 % -63.960% -66.396% 52797%  -68212%  -71.614% -91.903% -92.887%

Motif scores directly (SP) against counting structures (Count) - % variation between absolute error of SP and

Count.
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Resea rCh QUEStions I am inte rEStEd to explore (very open to other stuff in similar areas)*

e How does the characteristics of a network/system affect its capability to learn? Can we derive any insights
using topological features? You et al. 2020, Papamarkou et al. 2024

e How can geometric machine learning approaches be utilized to explore key structural and functional
concepts in complex networks, such as connectivity, modularity, and centrality, to gain deeper insights across
domains like neuroscience? Can general knowledge systems also benefit? Luo et al. 2024, C. Vieira et al. 2024

e How do we draw more power from Graph Neural Networks? Should we pursue new designs? What current
design choices limit their effectiveness? Morris et al. 2023, Mdller et al. 2023, Zhang et al. 2024

e How can we artificially generate networks that accurately mimic the real-world at multiple levels? Barabasi

2016, Du et al. 2024, Kovacs and |lidi 2024

o How can we use networks to accurately represent a wide range of real-world phenomena, such as
social interactions or brain activity?

e Can we modulate complex networks as means to achieve foundational learning systems? Bommasani et al.
2022, Cheng et al. 2024

e Can we modulate diffusion and cascade behaviour as a blueprint to improve the learning process and/or
learning capacity? Leskovec et al. 2007, Kipf and Welling 2017, You et al. 2020
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* With a focus on Geometric Deeﬁ Learnini, or more ieneralli, Network Science and Machine Learnini


http://arxiv.org/abs/2007.06559
https://arxiv.org/abs/2402.08871
http://arxiv.org/abs/2406.02594
https://openreview.net/forum?id=PZVVOeu6xx
http://arxiv.org/abs/2112.09992
http://arxiv.org/abs/2302.04181
http://arxiv.org/abs/2401.08514
https://networksciencebook.com/
https://networksciencebook.com/
https://doi.org/10.1038/s42256-024-00843-5
https://arxiv.org/abs/2403.13849
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2407.19941
https://doi.org/10.1137/1.9781611972771.60
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2007.06559
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you.



