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Motivation

Bring all the benefits of dimensionality reduction to streams of

data.




Related Work

In-Sample Out-of-Sample

= t-SNE; -> Piecewise-Laplacian Projection
(PLP) ;

- UMAP;

=> Least Squares Projection (LSP);

= Classical Multidimensional Scaling

(MDS); -> Local Affine Multidimensional

- Projection (LAMP)




Problem Setup

Known approaches fail to deal with a large, possibly infinite, amount of data.

This can be attributed to either a failure to deal with the data due to a lack of
memory management or their architectures failing to extract meaningful
information from ever increasing amounts of data.

To hope to obtain a method to handle streamed data we must answer:

e \When should we start operating on a dataset ]) if such dataset can be infinite”

e How can we reduce the space fingerprint of the algorithm while assuring the extracted data
IS meaningful?

e If /) suffers concept drift, how can the existing projections be updated?




When should we start operating on a dataset /) if such dataset can be
infinite?

-> Fixed batch-wise approach to mitigate challenges of infinite data-streams:
€ Points are accumulated until a predetermined batch size, /3, is attained;

=> Normal t-SNE will be applied in the first projection;

=> However, after the first iteration of S+t-SNE, subsequent iterations will project
IN_ a space where points already exist;

= Initial Points




How can we reduce the space fingerprint of the algorithm while assuring
the extracted data is meaningful?

-> Select points based on their importance to describe the data (PEDRUL):
€ Have Higher density in the original D-dimensional space given a search
radius R;
€ The neighborhood defined by R does not contain a subset of points from
already chosen dense points;




=> Define Regions of interest:
€ Retaining the shape of groups of points by using a clustering algorithm
applied to t-SNE projections;
€ Construct a convex region around each cluster to retain the general
shape of the clusters found;




If /) suffers concept drift, how can the existing projections be updated?

=> Must be compatible with the approach described so far.
¢ Convex polygons in, digest (look for drift), modified convex polygons out.

-> Must cover the whole polygon while being efficient.
+ Divide each polygon in areas that, if removed, always result in a convex polygon.

=> Must be able to evaluate the relevance of points to the projection in the current iteration
+ Blind drift detection using exponential decay for each of the spanned regions.

This is efficient! O(mkp - logn) + O(mkn -logn) , and, if parallel, O(p - logn) + O(n logn)where k is
the maximum number of vertices in a polygon, p the number of polygons, 7t the maximum
number of PEDRUL points in a polygon and m the number of concentric regions.
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Different strategies

- In the single counter strategy, every
region shares a counter. After a cut is
made, the counter is zeroed.

- Other approach is to implement a
counter per region and reset only the
counter of the region it suffered an
alteration.




Experiments

=> MNIST - Handwritten digits
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MNIST projections at different iterations of the streamed data.
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Visual Comparison of S+t-SNE and t-SNE
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=>» Artificial 3D DataStream

=> Three 3D distributions with variability over time;
-> Nearly 500.000 points to be embedded,;

3D visualization of the DataStream simulated
through time
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Projections of S+t-SNE at different iterations of the streamed data.
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Known Limitations

= “Lonely guy at a party”

€ If new points don’'t consider their intra-similarity but only their inter-similarity (with already
projected data) points with low intra-similarity can end up close together.
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